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Abstract

We explored structural brain connectomes in children with spastic unilateral cerebral

palsy (uCP) and its relation to sensory-motor function using graph theory. In 46 chil-

dren with uCP (mean age = 10 years 7 months ± 2 years 9 months; Manual Ability

Classification System I = 15, II = 16, III = 15) we assessed upper limb somatosensory

and motor function. We collected multi-shell diffusion-weighted, T1-weighted and

T2-FLAIR MRI and identified the corticospinal tract (CST) wiring pattern using tran-

scranial magnetic stimulation. Structural connectomes were constructed using Virtual

Brain Grafting-modified FreeSurfer parcellations and multi-shell multi-tissue con-

strained spherical deconvolution-based anatomically-constrained tractography. Graph

metrics (characteristic path length, global/local efficiency and clustering coefficient)

of the whole brain, the ipsilesional/contralesional hemisphere, and the full/ipsile-

sional/contralesional sensory-motor network were compared between lesion types

(periventricular white matter (PWM) = 28, cortical and deep gray matter

(CDGM) = 18) and CST-wiring patterns (ipsilateral = 14, bilateral = 14, contralat-

eral = 12, unknown = 6) using ANCOVA with age as covariate. Using elastic-net reg-

ularized regression we investigated how graph metrics, lesion volume, lesion type,
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CST-wiring pattern and age predicted sensory-motor function. In both the whole

brain and subnetworks, we observed a hyperconnectivity pattern in children with

CDGM-lesions compared with PWM-lesions, with higher clustering coefficient

(p = [<.001–.047], η2p=[0.09–0.27]), characteristic path length (p = .003, η2p=0.19)

and local efficiency (p = [.001–.02], η2p=[0.11–0.21]), and a lower global efficiency

with age (p = [.01–.04], η2p=[0.09–0.15]). No differences were found between CST-

wiring groups. Overall, good predictions of sensory-motor function were obtained

with elastic-net regression (R2 = .40–.87). CST-wiring pattern was the strongest pre-

dictor for motor function. For somatosensory function, all independent variables con-

tributed equally to the model. In conclusion, we demonstrated the potential of

structural connectomics in understanding disease severity and brain development in

children with uCP.
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1 | INTRODUCTION

The complexity of the human brain is thought-provoking and still not

fully understood. The human brain involves multiple, closely inter-

twined, networks that allow us to perform highly skilled movements

and cognitive processes. Advancements in Diffusion magnetic reso-

nance imaging (dMRI) and tractography techniques have enabled the

investigation of both micro- and macro-structural changes in the

brain's white matter, enriching our understanding of the complex

brain architecture and its development.

A brain lesion occurring early in life can disrupt the typical devel-

opment of these brain networks and even result in alteration of the

brain's anatomical architecture, as is the case for children having cere-

bral palsy (CP). CP is the most common cause of disability in children

(Oskoui et al., 2013), and is defined as a group of permanent disorders

of the development of movement and posture, causing activity limitation,

that are attributed to non-progressive disturbances that occurred in the

developing fetal or infant brain; the motor disorders of CP are often

accompanied by disturbances of sensation, perception, cognition, commu-

nication, and behaviour, by epilepsy, and by secondary musculoskeletal

problems (Rosenbaum et al., 2007). In one third of these children,

sensory-motor impairments are predominantly present on one side of

the body, also referred to as unilateral cerebral palsy (uCP)

(Surveillance of Cerebral Palsy in Europe, 2000).

Multiple studies have used Diffusion MR imaging in an attempt to

improve our understanding of structure–function relationships in chil-

dren with uCP, in particular regarding upper limb functionality, indi-

cating a relation between the severity of the underlying brain damage

and upper limb sensory-motor function (Mailleux et al., 2021; Mail-

leux, Franki, et al., 2020). However, most studies focused on specific

regions of interest, mostly part of the primary sensory-motor areas,

while motor actions go beyond activity in the primary sensory-motor

network and involve multiple networks across the brain (Mailleux,

Franki, et al., 2020). Moreover, compared with typically developing

children, studies in CP using whole brain dMRI structural connectivity

analyses revealed a reduced white matter connectivity not only in

sensory-motor regions, but also in nonmotor areas (Arrigoni

et al., 2016; Ballester-Plané et al., 2017). This underlines the need for

further study of the brain structural networks which would allow us

to investigate how the structural network reorganizes following brain

damage early in life and how this relates to sensory-motor function.

Indeed, we could expect that in the case of CP, brain changes

occur on a network scale through individual neuroplastic processes.

Graph theory (GT) analysis can investigate the brain network charac-

teristics using dMRI tractography, providing information on both

global and local integration in the brain (Sporns, 2013; Sporns, 2018).

In addition, it can reveal changes in brain organization that extend

beyond the injured brain areas. Such information is essential for

understanding global and long-term functional outcomes of focal

structural brain injury. Moreover, contrary to other analysis tech-

niques, GT-analyses of structural connectomes are not dependent on

a single region or structure that may be distorted or absent due to

severe brain pathology in these children. However, the construction

of structural connectome does require an accurate parcellation map

from which to derive the nodes of the network. Yet, brain parcellation

is challenging in populations with large lesions and notable distortion

of the normal brain structure, as often encountered in children with

CP. Therefore, we applied a lesion inpainting method (Radwan

et al., 2021) to minimize parcellation errors, which allowed us to inves-

tigate the lesioned hemisphere and include patients with large lesions

who would have otherwise been excluded, without interpreter bias.

Additionally, we used a tailored processing pipeline that accounted for

the presence of lesions in all analysis stages.

In this study, we will explore the structural connectomes of the

dominant (contralesional) and nondominant (ipsilesional) hemisphere

in children with uCP, using graph theory analysis. We will first investi-

gate whether structural brain connectomes differ across uCP-specific

classification groups (i.e., lesion type and corticospinal tract (CST)
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wiring pattern). Regarding lesion type, we hypothesized a more dam-

aged structural brain network in children with late-onset lesions pre-

dominantly affecting grey matter structures (i.e. cortical and deep

grey matter, CDGM) compared with children with early-onset lesions

predominantly affecting the white matter (i.e., periventricular white

matter, PWM). Regarding the CST-wiring pattern, we hypothesized

that children in whom ipsilateral CST-projections control the impaired

hand (i.e., ipsilateral and bilateral CST-wiring pattern), would have a

more damaged structural brain network, compared with children with

a contralateral CST-wiring pattern. Secondly, we will explore the

added value of GT-measures in predicting upper limb sensory-motor

function along with other neurological factors (i.e., lesion type, CST-

wiring pattern and lesion volume).

2 | METHODS

2.1 | Participants

Children with a predominantly spastic type of uCP, aged 5 to 15 years

were recruited between May 2014 and April 2017 via the CP-care

program of the University Hospitals Leuven (Belgium). Exclusion cri-

teria were: (1) botulinum toxin-A injections 6 months prior to testing,

(2) upper limb surgery in the past 2 years and (3) any contraindications

for MRI.

All children underwent an upper limb evaluation, including a clini-

cal assessment of motor and sensory impairments, and an evaluation

of bimanual performance and unimanual capacity at the Clinical

Motion Analysis Laboratory of the University Hospitals Leuven. Chil-

dren were assessed by three well-trained physiotherapists who were

routinely involved in the clinical evaluation of children with CP. On

the same day or within a time interval of maximum 4 months, all chil-

dren underwent a scanning protocol including structural and dMRI

scans, as well as transcranial magnetic stimulation (TMS) to determine

the CST-wiring pattern.

The study was approved by the Ethical Committee of the Univer-

sity Hospitals Leuven (S55555, S56513) and parental written

informed consent was obtained for all children prior to participation,

according to the Declaration of Helsinki. Children aged 12 years or

above were additionally asked for their written assent prior to

participation.

2.2 | Clinical assessment

The evaluation of sensory-motor impairments included grip force and

somatosensory function (i.e., two-point discrimination and stereogno-

sis). Grip force was evaluated with the Jamar dynamometer (Lafayette

Instrument Company, Lafayette, IN, USA), using the mean of three

maximum contractions of each hand. Two-point discrimination and

stereognosis were assessed according to Klingels et al. (2010) Briefly,

two-point discrimination was examined distally at the index finger

using an aesthesiometer to identify the minimal distance at which one

or two points could be correctly distinguished. Stereognosis was eval-

uated via tactile identification of six familiar objects.

At activity level, bimanual performance was assessed using the

Assisting Hand Assessment (AHA) (Holmefur & Krumlinde-

Sundholm, 2016; Krumlinde-Sundholm et al., 2007). During a video-

recorded semi-structured play session, the AHA evaluates the

spontaneous use of the impaired hand during bimanual activities. After-

ward, 22 items were scored and converted to 0–100 logit-based AHA

units. Unimanual capacity was assessed at both hands with the Jebsen-

Taylor Hand Function Test (JTHFT), evaluating movement duration

during the execution of six unimanual tasks (Araneda et al., 2019).

2.3 | MRI acquisition

All MR images were acquired using the same scanner (3 T Philips

Achieva, 32-channel phased-array head coil) and scanning protocol.

To limit motion, a familiarization protocol was used with children up

to 10 years of age (Verly et al., 2018), and all children were able to

watch a movie during scanning. Multi-shell diffusion-weighted images

were acquired with spatial resolution = 2.5 � 2.5 � 2.5 mm3,

TR/TE = 7800/90 ms, Flip angle = 90� phase encoding = AP, b-

values = 0/700/1000/2800 with respectively 10/25/40/75 uniformly

distributed gradient directions, in-plane parallel acceleration factor

(SENSE) (Pruessmann et al., 1999) = 2.5, acquisition matrix =

96 � 96 � 50. High-resolution T1-weighted images (MPRAGE) were

acquired with spatial resolution = 1.2 � 0.98 � 0.98 mm3, TR/TE =

9.6/4.6 ms, Flip angle = 8�, acquisition matrix = 160 � 256 � 256,

and 3D turbo spin-echo. T2-weighted fluid-attenuated inversion

recovery images (T2-FLAIR) were acquired with spatial resolution =

0.71 � 0.71 � 1.2 mm3, TE/TR/TI = 415/4800/1650 ms, Flip angle

= 90�, acquisition matrix 352 � 352 � 299.

2.4 | Image processing

All images were semi-automatically processed by combining publicly

available toolboxes and in-house developed scripts (using Bash and

Matlab v2020b). Below we briefly discuss the processing steps and

give a visual overview of the processing pipeline (Figure 1). A detailed

description is given in Data S1 methods.

Manual lesion segmentation was done in ITK-snap (Yushkevich

et al., 2019) (v3.8.0) by a neuroradiologist (AR) using the T1 and

T2-FLAIR weighted images, and lesion volumes were calculated. Vir-

tual Brain Grafting (Radwan et al., 2021) (VBG v0.31) was used to

generate synthetic lesion-free images from the T1-weighted images

and lesion masks, which were used for whole brain structural parcella-

tion with FreeSurfer (Fischl, 2012) (v6.0) recon-all. The resulting

Desikan-Killiany (Desikan et al., 2006) parcellation maps were trans-

formed to the mean fiber orientation distribution (FOD) image using

ANTs (Avants et al., 2011; Tustison et al., 2021) (v2.3.1) affine regis-

tration followed by nonlinear registration with a mutual information

cost-function, and appended with four brainstem regions from the
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Diffusion T1-weighted

Toolboxes
• MRtrix3

• BrainSuite

• ITK-SNAP
• VBG
• Freesurfer

• ANTs

• BCT + in-house 
matlab scripts

FLAIR

Diffusion preprocessing
• Gibbs ringing removal

• motion and eddy-current 

correction with outlier 
replacement (FSL eddy)

• biasfi eld correction (ANTs)

Upsampling
1.3mm isotropic

FOD estimation
msmt-CSD and mtnormalise

Tractography
• whole-brain ACT

• SIFT2 reweighting

Connectome 

generation

Graph measures
Normalized to randomized 

networks
• characteristic path length
• global and local effi ciency

• Clustering coeffi cient

Distortion Correction

6 additional nodes
• Left/right cerebellum from 

segmentation.
• Left/right CST and ML 

brainstem regions.

Lesion segmentation
semi-automated

Virtual Brain Grafting

Registration to FOD

Parcellation
• Desikan-Killiany atlas

F IGURE 1 Overview of the imaging
analysis pipeline, color-coded by software
packages used. ACT, anatomically-
constrained tractography; BCT, brain
connectivity toolbox; CST, corticospinal
tract; FOD, fiber orientation distribution;
ML, medial lemniscus. msmt-CSD, multi-
shell multi-tissue constrained spherical
deconvolution; SIFT, spherical-

deconvolution informed filtering of
tractograms; VBG, virtual brain grafting.
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UKBB volumetric white matter bundles (Miller et al., 2016) atlas for

the bilateral corticospinal tracts (CST) and medial lemnisci (ML),

henceforth referred to as the modified Desikan-Killiany

parcellation maps.

Diffusion-weighted images were preprocessed using an

MRtrix3 (v3.0) based (Tournier et al., 2019) pipeline including,

image denoising (Vervaart et al., 2016), Gibbs ringing correction

(Kellner et al., 2016), motion and eddy current correction with FSL

(v6.0.1) Eddy (Andersson et al., 2003), and ANTs (Avants

et al., 2011; Tustison et al., 2021) N4 bias-field correction

(Tustison et al., 2010). The T1-weighted images were bias-field

corrected and used for EPI distortion correction in the BrainSuite

Diffusion Pipeline (Bhushan et al., 2015, 2012) (BDP v19a)

(Bhushan et al., 2015; Tustison et al., 2010). Subject-level tissue-

specific constrained spherical deconvolution (CSD) response func-

tions were generated using multi-shell multi-tissue CSD and a

group-level average tissue-specific response function was calcu-

lated in MRTrix3 (Jeurissen et al., 2014). Individual FOD maps were

generated based on the group-average response functions, and

normalized for multiple tissues. Whole-brain tractograms were

generated for each subject (iFOD2, 10 million fibers, minimum/

maximum length = 5/300 mm, maximum angle = 45�), using

anatomically-constrained tractography (Smith et al., 2012), includ-

ing amygdalae and hippocampi as subcortical grey matter and

SIFT2 re-weighting of streamlines (Smith et al., 2012; Smith

et al., 2013).

Structural connectomes were constructed with MRTrix3 for each

subject with TCK2connectome (Smith et al., 2015) using the whole

brain, SIFT2-weighted, tractograms and modified Desikan-Killiany par-

cellations (Desikan et al., 2006). GT-analysis was performed using in-

house developed MATLAB scripts and the Brain Connectivity toolbox

(v2019-03-03). GT-measures of characteristic path length, global and

local efficiency and clustering coefficient were calculated on multiple

levels, namely: the whole brain (using all 88 nodes), separate ipsile-

sional (using all 41 supratentorial ipsilesional nodes) and contralesional

(using all 41 supratentorial contralesional nodes) hemispheres, as well

as the full sensory-motor network (SMN, 22 nodes, see Table A in

Data S1), and ipsilesional and contralesional SMN (each 11 nodes, see

Table A in Data S1). Self-connections were removed from all connec-

tomes. Nodes where less than 1000 streamlines arrived were defined

as disconnected nodes and were removed from the connectome. Sub-

sequent, disconnected nodes in a particular subnetwork, having no

connections to other nodes within the subnetwork, were removed

from that subnetwork. All edge weights were divided by the maximum

edge weight. Characteristic path length and global efficiency were cal-

culated using Dijkstra's algorithm (Dijkstra, 1959), with the

connection-length matrix defined by the inverse edge weights. Clus-

tering coefficient and local efficiency measures were calculated as

recommended by Wang et al. (2017). Briefly, characteristic path

length measures the average distance between any two nodes in the

network. Clustering coefficient expresses the tendency of a network

to be organized in densely connected groups (clusters) and is charac-

terized by the connectivity between neighboring nodes. Global

efficiency refers to the mean inverse distance between two nodes in

the network. Similarly, local efficiency is a measure of the mean

inverse distance between the neighbors of a node, excluding the node

itself. For each subnetwork, 100 random graphs were calculated by

randomly permuting the edges, while keeping the connectome sym-

metry, the zero-weight of the self-connections and excluding graphs

with disconnected nodes. All graph measures were normalized by

dividing the original graph measure by the median graph measure of

the equivalent random networks.

2.5 | Transcranial magnetic stimulation

We performed single-pulse TMS to identify the underlying CST-wiring

pattern using a MagStim 200 Stimulator (Magstim Ltd.) with a 70 mm

figure-eight coil and a Bagnoli electromyography system (Delsys Inc.).

After identifying the hotspot and the resting motor thresholds, motor-

evoked potentials were elicited and recorded for both adductor polli-

cis brevis muscles to identify the CST-wiring pattern (contralateral,

bilateral or ipsilateral). A more detailed description can be found else-

where (Simon-Martinez et al., 2018).

2.6 | Statistical analysis

Descriptive statistics were collected including age, sex and side of

uCP. One-way analyses of covariance (ANCOVA) were used to inves-

tigate the difference in the GT-measures between lesion types (PWM

and CDGM) and between CST-wiring groups (contralateral, bilateral,

ipsilateral) with age as a covariate. If a nonsignificant interaction was

found between age and the clinical group, only the model with the

main effects was retained. Normal distribution of the residuals was

reviewed and confirmed for each fitted model (Lumley et al., 2002).

Partial eta squared (η2p ) values were calculated to indicate effect sizes

and interpreted as small (0.01–0.06), medium (0.06–0.14), and large

(>0.14) (Gravetter & Wallnau, 2004). For the CST-wiring pattern, a

Bonferroni post hoc test, for comparing three CST-groups, was imple-

mented with a corrected p-value (α = .05). SPSS Statistics version

27.0 (IBM) was used.

Next, we explored the value of adding GT-measures to other neu-

rological factors (lesion volume, lesion type and CST-wiring pattern) in

predicting upper limb sensorimotor function. This was done through

elastic-net regularized regression which optimizes between ridge

regression (L2) which shrinks coefficients, and LASSO (L1) regression

which excludes predictors that do not add to the model (Zou &

Hastie, 2005). The amount of ridge or LASSO regression is expressed

by a variable alpha which ranges from 0 (only ridge regression) to

1 (only LASSO). The models were evaluated using R-squared2 and

root-mean-square error (RMSE). After taking the average of

100 cross-validation errors for each alpha and lambda combination,

the highest alpha and lambda with a mean cross-validation error that

fell within one standard error of the combination with the lowest

mean cross-validation error was used. This resulted in the selection of

RADWAN ET AL. 2745



the best, most parsimonious model. The continuous variables

(GT measures, lesion volume and age) were standardized so that the

estimates can be interpreted as effect sizes. Further, dummy variables

were created for the categorical variables (lesion type and CST-wiring

pattern). The R2 was interpreted according to Cohen (Cohen, 1988) as

weak (.02), moderate (.13) or substantial (.26). The effect sizes of the

individual predictors were interpreted according to Cohen's jdj with

values <.1 as tiny, values between .1 and .2 as very small, between .2

and .5 as small, between .5 and .8 as moderate, between .8 and 1.2 as

large, between 1.2 and 2.0 as very large and >2.0 as huge

(Sawilowsky, 2009). This analysis was performed with R (ver-

sion 4.1.1).

3 | RESULTS

3.1 | Participants

Fifty-five children with spastic uCP were included. Average age at

time of the MRI assessment was 10 years and 7 months (SD 2 years

and 9 months; age range 5 years 6 months to 15 years and

10 months). Regarding lesion type, one child was classified as having a

cortical maldevelopment, six children had an acquired brain lesion and

two children presented with a normal structural MRI scan. These chil-

dren were excluded from further analyses as these small groups do

not allow statistical comparison. Of the remaining 46 children, 28 were

classified in the PWM group and 18 in the CDGM group. Regarding

the type of the CST-wiring pattern, 12 children had a contralateral

CST-wiring pattern (10 PWM and 2 CDGM), 14 had bilateral CST-

projections (7 PWM, 7 CDGM) and 14 ipsilateral CST-projections

(8 PWM, 6 CDGM). Due to the presence of epilepsy (N = 3) or due to

refusal (N = 3), we were unable to perform the TMS assessment in

six children. Table 1 displays an overview of the participant's charac-

teristics. In addition, a detailed overview of the descriptive and clinical

characteristics according to lesion types and CST-wiring pattern is

provided in Data S1 (Tables B and C).

3.2 | Graph theory measures across lesion type
and CST-wiring pattern groups

Figure 2 shows the resulting connectomes for a child with a PWM

lesion (panel a) and a child with an extensive CDGM lesion (panel b).

As can be visually depicted, the large extent of the lesion in panel b

led to multiple nodes in the connectomes to be disconnected, which

appeared in 12/46 participants (median = 2 disconnected nodes,

range= [1–13]) in this study. By removing these disconnected nodes

from the connectome, these participants could be successfully

included in all analyses.

For lesion type, significant main effects were found with higher

values in the CDGM group compared with the PWM group with

effect sizes ranging from medium to large (Table 2) for following

parameters. Clustering coefficient was significantly higher in the

whole brain (p = .048; η2p = 0.09); ipsilesional hemisphere (p< .001,

η2p = 0.27), full SMN (p = .001, η2p = 0.21), and ipsilesional SMN

(p = .01, η2p = 0.14). A higher characteristic path length was found in

the full SMN (p = .003, η2p = 0.19). Local efficiency was significantly

higher in the whole brain (p = .01, η2p = 0.15), full SMN (p = .001,

η2p = 0.21) and contralesional SMN (p = .02, η2p = 0.11). Additionally, a

significant interaction effect between age and lesion type was found

for global efficiency in the whole brain (p = .01, η2p = 0.15), contrale-

sional hemisphere (p = .03, η2p = 0.11) and contralesional SMN

(p = .04, η2p = 0.09), indicating that global efficiency decreases more

with age in children with CDGM lesions compared with children with

PWM lesions. Another interaction effect with age was found for char-

acteristic path length in the whole brain (p = .01, η2p = 0.15), which

increased more with age in children with CDGM lesions. The interac-

tion effects are visualized in Figures S1 to S5.

No significant differences were found across CST-wiring pattern

groups (p > .08, η2p<0.13), except for an interaction effect between

age and CST-wiring pattern for characteristic path length in the con-

tralesional hemisphere (p = 0.006, η2p=0.26) and in the ipsilesional

SMN (p = .02, η2p=0.20), without significant post hoc differences (see

Table 3 and Figures S6 and S7).

TABLE 1 Participant's characteristics.

Sex

Male N = 27

Female N = 19

Age

at MRI 10 years 7 months (±2 years 9 months)

at clinical assessment 10 years 8 months (±2 years 8 months)

Age range 5 years 6 months to 15 years 10 months

Side of unilateral CP

Right N = 25

Left N = 21

MACS

Level I N = 15

Level II N = 16

Level III N = 15

Lesion type

PWM lesions N = 28

CDGM lesions N = 18

CST wiring pattern

contralateral N = 12

bilateral N = 14

ipsilateral N = 14

unknown N = 6

Lesion volume 42.05 (±70.25) mL

Note: Continuous parameters are displayed by their mean and standard

deviation (between brackets).

Abbreviations: CDGM, cortical and deep grey matter; CST, corticospinal

tract; MACS, manual ability classification system; PWM, periventricular

white matter.
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3.3 | Elastic-net regularized regression

For this analysis, 39 children with the complete data set were

included. One child had missing data for two-point discrimination

and stereognosis and six children did not undergo the TMS

assessment.

The elastic-net regularized regression selected a full LASSO-

regression (α = 1) for four dependent variables (i.e., AHA, grip force of

both hands and JTHFT of the dominant hand), while for both somato-

sensory outcomes a full RIDGE-regression was selected (α = 0). For

the JTHFT of the impaired hand a combination of LASSO and RIDGE

regression was used (α = .17). R2 was substantial for all models,

except for movement duration (i.e., JTHFT). A detailed overview of

the output can be found in Table D in Data S1.

For bimanual performance, that is, AHA, the R2 was .73

(RMSE = 0.56). The CST-wiring pattern was the strongest predictor

with a moderate (d = �0.78) to large (d = �0.98) effect size. Com-

pared with children with a contralateral CST-wiring pattern, having an

ipsilateral CST-wiring pattern was related to a 0.98xSD lower score

on the AHA on average and having a bilateral CST-wiring pattern with

a 0.78xSD lower score on average. The other retained variables con-

tributed with a tiny (jdj < 0.1) to very small (jdj = 0.1–0.2) effect.

The R2 for grip force of the impaired hand was .74 (RMSE = 0.54).

The CST-wiring pattern was the strongest predictor with moderate

negative effect sizes (d = �0.71 and � 0.54), with lower values for

children with ipsilateral or bilateral CST-wiring patterns compared

with those with contralateral CST-wiring patterns. Additionally, age

had a small positive effect (d = 0.38) on grip force, and local efficiency

(a) (b)
F IGURE 2 Tractograms,
whole-brain connectomes and
SMN networks of two
participants. (a) The connectome
of a child with a right-lateralized
white matter lesion. (b) The
connectome of a child with an
extensive left-lateralized cortical
and deep grey matter lesion. All

edge weight values are
normalized to the maximum edge
weight in the connectome.
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of the full SMN further contributed with a small negative effect to the

model (d = �0.24). Other retained variables only had a very small to

tiny effect (jdj < 0.12). Age was the only predictor to explain the vari-

ance in grip force of the dominant hand with a moderate

effect (d = 0.54).

For movement duration (i.e., Jebsen-Taylor Hand function test,

JTHFT), the R2 was .39 (RMSE = 0.89) for the impaired hand and 0.40

(RMSE = 0.83) for the dominant hand. Age had a small negative effect

(d = �0.22) for movement duration of the dominant hand. All other

retained variables contributed with a tiny effect (jdj < 0.13).

For both somatosensory outcomes all variables were included in

the model (α = 0), suggesting that all variables equally contributed to

variation of the dependent variable. However, overall individual effect

sizes were tiny to very small (d < 0.20). For two-point discrimination

the R2 was 0.80 (RMSE = 0.51), and for stereognosis, the R2 was .87

(RMSE = 0.41).

4 | DISCUSSION

In this exploratory study, we used graph theory to explore structural

brain connectomes across the whole brain in children with uCP, and

investigated the relation with upper limb sensory-motor function. We

found that structural connectomes were mainly lesion type

TABLE 2 Normalized graph theory measures across lesion types.

Graph measures

X(SD) Age by lesion type Lesion type Age

PWM CDGM F p-value (η2pÞ F p-value (η2pÞ F p-value (η2pÞ
Whole brain

Char. PL. 1.34 (0.09) 1.50 (0.24) 7.25 .01 (0.15) 2.69 .11 (0.06) 27.49 <.001 (0.40)

Cluster coeff. 2.53 (0.30) 2.73 (0.32) 0.96 .33 (0.022) 4.16 .048 (0.09) 0.34 .56 (0.008)

Global eff. 0.87 (0.02) 0.86 (0.04) 7.26 .01 (0.15) 4.92 .03 (0.11) 16.86 <.001 (0.29)

Local eff. 8.46 (2.22) 10.3 (2.26) 0.07 .79 (0.002) 7.27 .01 (0.15) 3.26 .08 (0.07)

Ipsilesional hemisphere

Char. PL. 1.34

(0.11)

1.35 (0.19) 3.78 .06

(0.08)

0.001 .97 (0.00) 7.03 .01 (0.14)

Cluster coeff. 1.99 (0.12) 2.25 (0.31) 3.23 .08 (0.07) 15.53 <.001 (0.27) 0.73 .40 (0.02)

Global eff. 0.89 (0.02) 0.89 (0.04) 2.00 .16 (0.05) 0.006 .94 (0.00) 0.00 .98 (0.00)

Local eff. 4.39 (0.95) 5.84 (3.74) 0.00 .99 (0.00) 3.45 .07 (0.07) 2.26 .14 (0.05)

Contralesional hemisphere

Char. PL. 1.37 (0.17) 1.43 (0.28) 1.79 .19 (0.04) 0.42 .52 (0.01) 18.36 <.001 (0.20)

Cluster coeff. 1.95 (0.13) 1.94 (0.16) 1.55 .22 (0.04) 0.14 .71 (0.003) 0.42 .52 (0.01)

Global eff. 0.88 (0.03) 0.90 (0.03) 5.28 .03 (0.11) 7.00 .01 (0.14) 11.47 .002 (0.21)

Local eff. 3.97 (0.78) 4.25 (0.63) 0.00 .99 (0.000) 1.31 .26 (0.03) 5.40 .02 (0.11)

Full SMN

Char. PL. 1.15 (0.14) 1.65 (0.85) 0.22 .65 (0.005) 9.96 .003 (0.19) 0.50 .48 (0.01)

Cluster coeff. 1.65 (0.20) 1.89 (0.27) 0.60 .44 (0.01) 11.55 .001 (0.21) 0.45 .50 (0.01)

Global eff. 0.94 (0.05) 0.93 (0.07) 0.91 .35 (0.02) 0.08 .78 (0.002) 0.25 .62

(.006)

Local eff. 3.28 (0.71) 4.15 (1.11) 0.04 .85 (0.001) 11.66 .001 (0.21) 2.79 .10 (0.06)

Ipsilesional SMN

Char. PL. 1.13 (0.14) 1.38 (0.65) 0.33 .57 (0.008) 3.59 .06 (0.08) 0.07 .79 (0.002)

Cluster coeff. 1.46 (0.09) 1.61 (0.28) 1.75 .19 (0.04) 6.97 .01 (0.14) 0.03 .87 (0.00)

Global eff. 0.95 (0.05) 0.96 (0.08) 2.46 .12 (0.06) 0.20 .66 (0.01) 0.65 .65 (0.01)

Local eff. 2.73 (1.93) 3.68 (4.73) 0.17 .68 (0.004) 0.96 .33 (0.02) 0.19 .66 (0.00)

Contralesional SMN

Char. PL. 1.16 (0.26) 1.08 (0.13) 1.14 .29 (0.03) 1.58 .22 (0.04) 0.35 .56 (0.00)

Cluster coeff. 1.47 (0.08) 1.44 (0.08) 0.42 .83 (0.001) 1.95 .17 (0.04) 2.86 .10 (0.06)

Global eff. 0.96 (0.04) 0.98 (0.05) 4.32 .04 (0.09) 5.78 .02 (0.12) 0.07 .79 (0.002)

Local eff. 2.10 (0.49) 2.68 (1.24) 0.86 .36 (0.02) 5.48 .02 (0.11) 1.75 .19 (0.04)

Note: Bold values are considered statistically significant.

Abbreviations: CDGM, cortical and deep grey matter; Char. PL, characteristic path length; coeff, coefficient; eff, efficiency; PWM, periventricular white

matter; SMN, sensory-motor network.
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dependent, while they appeared to be similar across different CST-

wiring patterns. However, the CST-wiring pattern remained the main

predictor for motor function. For somatosensation, there was an equal

contribution of all predictors.

A previous study showed that in children with uCP, CDGM

lesions damages more brain regions and are more extended compared

to PWM lesions (Mailleux et al., 2017). In addition, white matter

tracts, such as the CST and medial lemniscus, appear to be more

severely damaged in children with CDGM lesions compared with chil-

dren with PWM lesions (Mailleux, Simon-Martinez, et al., 2020). Our

findings additionally suggest that children with CDGM lesions have a

hyperconnectivity pattern between neighboring nodes (i.e., increased

clustering coefficient) in the ipsilesional hemisphere and SMN which

coincided with a decreased capacity in the full SMN connectome to

communicate between remote nodes (i.e., increased characteristic

path length) compared with children with PWM lesions. CDGM

lesions predominantly affect the target sites of the white matter con-

nections requiring those connections to take a detour to communicate

between nodes, explaining the increased characteristic path length.

Subsequently, as more direct connections between remote nodes are

damaged, neighboring nodes might tend to remain connected to

accommodate alternative pathways. This hyperconnectivity pattern

TABLE 3 Normalized graph theory measures across corticospinal tract wiring patterns.

Graph measures

X(SD) Age by CST-wiring CST wiring Age

Ipsi Bi Contra F p-value (η2pÞ F p-value (η2pÞ F p-value (η2pÞ
Whole brain

Char. PL. 1.41 (0.19) 1.40 (0.15) 1.34 (0.08) 1.50 .24 (0.08) 1.20 .31 (0.06) 10.40 .003 (0.22)

Cluster coeff. 2.59 (0.23) 2.62 (0.27) 2.52 (0.37) 0.59 .56 (0.03) 0.38 .69 (0.02) 0.003 .96 (0.00)

Global eff. 0.87 (0.03) 0.87 (0.03) 0.87 (0.03) 0.73 .49 (0.04) 0.36 .70 (0.02) 7.09 .01 (0.16)

Local eff. 8.96 (2.00) 8.81 (2.02) 9.18 (3.03) 0.21 .81 (0.01) 0.06 .95 (0.003) 1.03 .32 (0.03)

Ipsilesional hemisphere

Char. PL. 1.32 (0.12) 1.33 (0.10) 1.36 (0.14) 0.04 .96 (0.002) 0.28 .76 (0.02) 2.83 .10 (0.07)

Cluster coeff. 2.08 (0.13) 2.11 (0.27) 1.98 (0.15) 1.07 .36 (0.06) 1.39 .26 (0.07) 0.02 .90 (0.00)

Global eff. 0.90 (0.04) 0.89 (0.03) 0.89 (0.02) 0.43 .66 (0.03) 0.37 .69 (0.01) 0.50 .49 (0.01)

Local eff. 4.61 (1.06) 4.71 (1.20) 4.37 (0.92) 1.84 .78 (0.10) 0.47 .63 (0.03) 3.17 .08 (0.08)

Contralesional hemisphere

Char. PL. 1.42 (0.22) 1.32 (0.08) 1.31 (0.11) 6.06 .006 (0.26) 3.76 .03a (0.18) 20.04 <.001 (0.37)

Cluster coeff. 1.94 (0.08) 1.93 (0.08) 1.95 (0.20) 0.16 .85 (0.009) 0.08 .92 (0.005) 0.02 .88 (0.001)

Global eff. 0.89 (0.03) 0.90 (0.03) 0.89 (0.03) 0.31 .74 (0.02) 0.41 .67 (0.02) 4.36 .04 (0.11)

Local eff. 4.09 (0.70) 3.83 (0.51) 4.34 (0.96) 0.29 .75 (0.02) 1.44 .25 (0.07) 3.12 .09 (0.08)

Full sensorimotor network

Char. PL. 1.44 (0.84) 1.26 (0.27) 1.37 (0.64) 2.71 .08 (0.14) 0.36 .70 (0.02) 0.51 .48 (0.01)

Cluster coeff. 1.77 (0.23) 1.70 (0.21) 1.73 (0.34) 1.57 .22 (0.08) 0.22 .80 (0.01) 0.01 .91 (0.0)

Global eff. 0.95 (0.07) 0.94 (0.03) 0.92 (0.06) 2.36 .11 (0.12) 0.98 .38 (0.05) 0.04 .84 (0.001)

Local eff. 3.59 (0.81) 3.69 (1.12) 3.44 (1.06) 0.34 .72 (0.02) 0.15 .86 (0.01) 4.28 .05 (0.11)

Ipsilesional sensorimotor network

Char. PL. 1.29 (0.35) 1.06 (0.12) 1.27 (0.42) 4.15 .02 (0.20) 5.06 .01a (0.23) 2.13 .15 (0.06)

Cluster coeff. 1.55 (0.23) 1.47 (0.10) 1.53 (0.27) 2.58 .09 (0.13) 0.73 .49 (0.04) 0.28 .61 (0.01)

Global eff. 0.94 (0.07) 0.98 (0.04) 0.95 (0.05) 1.00 .82 (0.01) 2.70 .08 (0.13) 0.04 .85 (0.001)

Local eff. 4.18 (5.08) 2.10 (0.69) 3.44 (3.17) 1.61 .21 (0.09) 1.26 .30 (0.07) 0.08 .78 (0.002)

Contralesional sensorimotor network

Char. PL. 1.08 (0.11) 1.12 (0.14) 1.22 (0.37) 0.80 .46 (0.05) 1.22 .31 (0.06) 0.49 .49 (0.01)

Cluster coeff. 1.47 (0.07) 1.45 (0.08) 1.46 (0.10) 0.56 .58 (0.03) 0.24 .79 (0.01) 1.82 .19 (0.05)

Global eff. 0.98 (0.04) 0.96 (0.05) 0.96 (0.05) 2.22 .12 (0.11) 1.17 .32 (0.06) 0.46 .50 (0.01)

Local eff. 2.45 (0.93) 2.30 (1.22) 2.18 (0.68) 0.29 .75 (0.02) 0.27 .76 (0.02) 1.38 .25 (0.04)

Note: Bold values are considered statistically significant.

Abbreviations: Bi, bilateral wiring; Char. PL, characteristic path length; coeff, coefficient; contra, contralateral wiring; eff, efficiency; Ipsi, ipsilateral wiring;

SMN, sensory-motor network.
aNo significant post hoc differences.
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also fits within the neural group selection theory that indicates that

children with brain damage experience difficulties with selecting the

most appropriate neurons to perform a motor task, and will rather

select different groups of neurons every trial they perform the same

motor task (Hadders-Algra, 2000). This results in the retention of

abundant connections rather than pruning toward the most optimal

solution. Hence, based on our findings, we hypothesize that matura-

tional processes of pruning and myelination occur more aberrantly in

children with CDGM lesions compared with PWM lesions which

appears to persist into childhood and adolescence.

This hypothesis is strengthened by the interaction effects found

between lesion type and age for some graph metrics. With age, global

efficiency in the whole brain and in the contralesional hemisphere and

SMN decreased more in children with CDGM lesions compared with

PWM lesions, while characteristic path length in the whole brain

increased more in children with CDGM lesions. In neurotypical devel-

opment, global efficiency increases shortly after birth while both clus-

tering coefficient and characteristic path length decreases, a process

that continues even into adulthood (Cao et al., 2016). Hence, we

hypothesize that the structural connectome of children with CDGM

lesions deteriorates more with age compared with children with PWM

lesions. Longitudinal studies will be needed to confirm this

hypothesis.

So far, only one other research group has used GT-analysis to

investigate structural connectomes in children with uCP following

perinatal stroke, but only addressed the contralesional hemisphere

(Craig et al., 2020; Craig et al., 2022). Similar to our findings, they

found a higher global and local efficiency of the contralesional hemi-

sphere and higher clustering coefficient of the contralesional SMN in

children with arterial ischemic stroke (mainly affecting CDGM struc-

tures) compared with children with periventricular venous infarction

(mainly affecting the white matter) as well as in both patient groups

compared with neurotypical developing peers (Craig et al., 2020; Craig

et al., 2022). Nevertheless, since up to 50% of children with uCP have

bilateral brains lesions (Mailleux et al., 2017), future research is

required to investigate to what extent these changes in the contrale-

sional hemisphere are the result of such bilateral brain damage or

rather reflect potential compensatory mechanisms.

Strikingly, only limited differences in structural connectomes were

found between CST-wiring patterns. This was an unexpected finding,

since reorganization of the CST is the most well-known example of

brain plasticity in children with uCP. CST-projections descend from

the brain to the spinal cord both contralateral as well as ipsilateral

(Eyre, 2007). In neurotypical development the ipsilateral projections

are gradually withdrawn, while the presence of a (unilateral) lesion

may cause the contralateral CST-projections to withdraw and the ipsi-

lateral projections to preserve (Eyre, 2007). Nevertheless, our findings

suggest that the type of CST-wiring pattern occurs independently of

how the rest of the brain is structurally reorganized in children with

uCP, and that the structural connectome is more determined by the

type of the lesion. On the other hand, in a previous publication on this

cohort (Mailleux, Simon-Martinez, et al., 2020), in 7 out of 11 children

with ipsilateral CST wiring patterns, contralateral CST projections

could be established with dMRI-based tractography. This indicates

that there might be an intrinsic discrepancy between TMS- and dMRI-

derived CST measures, which should be further explored in future

studies combining TMS, dMRI and functional imaging.

Our elastic-net regularized regression revealed that the type of

CST-wiring pattern remains the main determinant of motor function,

in particular for bimanual performance and grip force of the impaired

hand. Similarly, previous studies (Mailleux, Simon-Martinez,

et al., 2020; Simon-Martinez et al., 2018), including multiple brain

lesion characteristics, have also shown the dominance of the CST-

wiring pattern in predicting upper limb motor function. For grip force

of the impaired hand, age and local efficiency of the full SMN addi-

tionally contributed with a small effect size. More specifically, our

results suggest that grip force is lower in children with higher local

efficiency of the full SMN. This is in line with Craig et al. (2020) who

also reported that a higher local efficiency of the contralesional hemi-

sphere was associated with lower motor function. An increase in age

further resulted in an increase in grip force (De Smet &

Vercammen, 2001). Furthermore, only age predicted grip force of the

dominant hand with a moderate effect size. For movement duration,

the lowest R2 was found with individual effect sizes that were mostly

tiny. For somatosensation all variables contributed to the model.

However, although a substantial prediction was achieved, the individ-

ual effect sizes of each variable were tiny to very small, indicating that

our model could not identify a single predictor that best explains

somatosensation.

This study also warrants some critical reflections. First, we this

dataset did not include a typical developing group. However, our

results, at least for the contralesional side, are in line with the studies

by Craig et al. (2020); Craig et al. (2022) who additionally included a

control group. Second, the heterogeneity of the included lesions and

effects of motion in this pediatric cohort is challenging for conducting

diffusion MRI analyses. We coped with these issues by developing a

tailored processing pipeline, minimizing potential biases. Third, the

acquired diffusion dataset did not include volumes with reversed

phase-encoding for distortion correction. Therefore, the BDP toolbox

was used to correct the EPI distortion artifacts based on the

T1-weighted images. Next, the elastic-net regularized regression was

performed on the whole data set, increasing the risk of overfitting the

models. Nevertheless, the aim of this research question was to explor-

atively identify predictors. Finally, we did not correct for multiple test-

ing due to the explorative nature of our study. The number of multiple

comparisons were kept minimal by only focusing on four graph met-

rics across six network levels. Furthermore, effect sizes were addition-

ally reported and strengthened the statistical findings. Moreover, the

results and hypotheses made in this exploratory study could support

future studies.

To the best of our knowledge, this is the first study that explored

the structural connectome using GT-analysis of both the contrale-

sional and ipsilesional hemisphere in children with uCP using a semi-

automated analysis. A major strength of this study is that our diffusion

MRI sequence allowed for multi-shell multi-tissue CSD-analysis which

accommodates the modeling of crossing fiber populations and
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contributions from different brain tissues (Jeurissen et al., 2014).

Moreover, when studying the brain in children with CP using tracto-

graphy, studies often lose data due to extensive lesions which then

results in an underrepresentation of those children. Here, we did not

lose any participant data due to the inability of tracking specific tracts

owed to the use of VBG (Radwan et al., 2021) and the graph theoreti-

cal framework accounting for the effects of lesions.

In conclusion, our study demonstrated the feasibility of an auto-

mated GT-analysis in children with uCP, including children with large

lesions. Our results suggest a hyperconnectivity pattern between

neighboring nodes in the ipsilesional hemisphere and SMN. Addition-

ally, the structural connectome did not differ between CST-wiring pat-

terns. However, the CST-wiring pattern outweighed structural

connectomes in predicting upper limb motor function, underlining the

importance to include this variable when studying structure–function

relation for the upper limb in children with uCP. For somatosensation,

we could not identify a strong individual predictor. Nevertheless,

graph theory analysis seems to be a powerful research tool to

strengthen our insights regarding the impact of brain damage on both

structural and functional connectomes of the developing brain in chil-

dren with uCP and how this relates to function, as well as to capture

brain changes after intensive therapy models.
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